Authors: Yasuhiro Matsui—National Traffic Safety and Environment Laboratory, Japan; Shoko Oikawa—Tokyo Metropolitan University, Japan
Abstract
This paper examines how vehicle backing technologies affect driver performance during backing maneuvers. We conducted experiments using sport utility vehicles (SUV) with four technological variations: a baseline vehicle (B-L), a vehicle equipped with a parking sensor (PS-V), a vehicle equipped with a backup camera (hereafter BC-V), and a vehicle equipped with both technologies (BCPS-V). Two reverse parking maneuvers were tested: backing straight and backing diagonally into a parking space. For each vehicle, we measured the parameters of the driver’s gaze, vehicle speed, the distance between the stopped vehicle and an object behind it, and the presence or absence of contact with the object. Fifteen drivers participated in the experiment. For backing straight, the B-L and PS-V drivers gazed at the driver-side mirror the longest; BC-V and BCPS-V drivers gazed at the monitor the longest. There was no significant difference in maximum speed among the four backing technology conditions. The PS-V was the farthest from the object when stopped, followed by the BCPS-V, the BC-V, and the B-L. Regarding the rate of non-contact, the BCPS-V ranked highest (67%, 95% confidence of interval [CI] [38%, 88%]), followed by the PS-V (60%, 95% CI [32%, 84%]), the BC-V (53%, 95% CI [27%, 79%]), and the B-L (20%, 95% CI [4%, 48%]). For backing diagonally, the B-L and PS-V drivers gazed at the passenger-side mirror the longest; BC-V and BCPS-V drivers gazed at the monitor the longest. The vehicles’ maximum speed showed no significant difference between the four backing technologies. However, the presence of backing technologies significantly reduced the vehicle speed at the object location. Once stopped, the BCPS-V had the longest distance from the object behind it, followed by the PS-V, the BC-V, and the B-L. The rate of non-contact was the highest for the PS-V (73%, 95% CI [45%, 92%]), followed by the BCPS-V (67%, 95% CI [38%, 88%]), the BC-V (60%, 95% CI [32%, 84%]), and the B-L (20%, 95% CI [4%, 48%]). These results indicate that the backing technologies in this study reduced the probability of direct impact with objects situated behind the vehicles. However, focusing on backing diagonally, which requires more complicated driving, vehicles equipped with a sonar backing system appear, in this study, to perform better in terms of stopping distance than those that did not have sonar.
Type: Full Paper
Keywords: Backover vehicle accidents, reverse parking, parking sensor, backup camera, backup camera with parking sensor
© Stapp Association, 2020
Access Additional Papers from This Volume
View additional Full Papers from the Stapp Car Crash Journal, Volume 64.
- Analysis of Kinematic Response of Pediatric Occupants Seated in Naturalistic Positions in Simulated Frontal Small Offset Impacts: With and Without Automatic Emergency BrakingAuthors: Jalaj Maheshwari, Shreyas Sarfare, and Aditya Belwadi—Center for Injury Research and Prevention, Children’s Hospital of Philadelphia; Clayton Falciani—Center for…
- Application of Deep Learning Methods for Pedestrian Collision Detection Using Dashcam VideosAuthors: Shouhei Kunitomi and Shinichi Takayama—Japan Automobile Research Institute; Masayuki Shirakawa—Japan Automobile Manufacturers Association, Inc. Abstract The goal of this…
- Biomechanical Responses and Injury Assessment of Post Mortem Human Subjects in Various Rear-facing Seating ConfigurationsAuthors: Yun-Seok Kang—Injury Biomechanics Research Center, The Ohio State University; Jason Stammen and Kevin Moorhouse—National Highway Traffic Safety Administration, Vehicle…
- Effects of Technology on Drivers’ Behavior during Backing ManeuversAuthors: Yasuhiro Matsui—National Traffic Safety and Environment Laboratory, Japan; Shoko Oikawa—Tokyo Metropolitan University, Japan Abstract This paper examines how vehicle…
- Evaluation of Rotation Reduction Features in Infant and Extended-Use Convertible Child Restraint Systems during Frontal and Rear ImpactsAuthors: Declan A. Patton, Aditya N. Belwadi, and Jalaj Maheshwari—Center for Injury Research and Prevention, Children’s Hospital of Philadelphia; Kristy…
- Geometrical and Mechanical Characterization of the Abdominal Fold of Obese Post Mortem Human Subjects for Use in Human Body ModellingAuthors: Matthieu Lebarbé—CEESAR (France); Philippe Beillas, Tomas Janak, and Yoann Lafon—Univ Lyon, Univ Claude Bernard Lyon 1, Univ Gustave Eiffel,…
- Kinematic and Injury Response of Reclined PMHS in Frontal ImpactsAuthors: Rachel Richardson, John-Paul Donlon, Mohan Jayathirtha, Jason L. Forman, Greg Shaw, Bronislaw Gepner, and Jason R. Kerrigan—University of Virginia…
- Variations in User Implementation of the CORA Rating MetricAuthor: Devon L. Albert — Center for Injury Biomechanics, Department of Biomedical Engineering and Mechanics, Virginia Tech Abstract The CORA…