Authors: Lan Xu and Guy Nusholtz—FCA US LLC, USA
Abstract
Statistical methods, using the entire time-history, can be used to assess the impact response of an ATD (Anthropomorphic Test Device) in terms of its repeatability and reproducibility. In general, the methods generate a correlation relationship described as shape, magnitude and phase-difference between two time-histories’ in a given set of similar tests: for repeatability the relationship it is for the same ATD, for reproducibility it is for different ATDs of the same design and for biofidelity it is a relationship between ATDs and biomechanical response data from a series of human surrogate impact tests. The method uses the phase relationship to minimize the difference between any two time-histories through an alignment procedure and the magnitude and shape correlations are used to generate a parametric evaluation of the differences between any two time-histories, or set of time-histories.
This paper introduces a variance analysis using the entire time history to build additional foundation to the parametric evaluations using the magnitude and shape correlations and how they can be used to define repeatability and reproducibility ratings/criterion. The proposed methodology has been evaluated using two data sets based on HIII 50th dummy’s chest acceleration time histories observed in USNCAP tests. The first set consists of five tests from a single Lab. The second set consists of seven tests from labs different from the first set. A time-history parameter, V, (the normalized summation of squared point to point difference between a pair of signals) was introduced and used to perform statistical analysis of Variance (ANOVA) of the reproducibility of the time histories under investigation. In particular, the V-parameter has been analyzed using both ANOVA and T-test approaches.
The relationship between the parameter V and the parameters shape correlation and magnitude correlation is derived analytically. Using this relationship, criterions have been defined for reproducibility and/or repeatability with respect to the shape and magnitude correlations metrics. The criterions have been developed using a limited data set and may change as more data becomes available and is analyzed.
Type: Full Paper
Keywords: Repeatability, reproducibility, correlation method, statistics, ATD, time-history difference
© Stapp Association, 2017
Access Additional Papers from This Volume
View additional Full Papers from the Stapp Car Crash Journal, Volume 61.
- Analysis of Repeatability and Reproducibility Standards of ATD Response for the Correlation MethodAuthors: Lan Xu and Guy Nusholtz—FCA US LLC, USA Abstract Statistical methods, using the entire time-history, can be used to…
- Application of Extreme Value Theory to Crash Data AnalysisAuthors: Lan Xu and Guy Nusholtz—FCA US LLC, USA Abstract A parametric model obtained by fitting a set of data…
- Association of Impact Velocity with Serious-Injury and Fatality Risks to Cyclists in Commercial Truck-Cyclist AccidentsAuthors: Yasuhiro Matsui—National Traffic Safety and Environment Laboratory, Japan; Shoko Oikawa—Tokyo Metropolitan University; Kazuhiro Sorimachi, Akira Imanishi, and Takeshi Fujimura—Isuzu…
- Biofidelity Evaluation of the THOR and Hybrid III 50th Percentile Male Frontal Impact Anthropomorphic Test DevicesAuthors: Daniel Parent, Matthew Craig, Kevin Moorhouse—National Highway Traffic Safety Administration Abstract The objective of this study is to present…
- Biomechanics of Lumbar Motion-Segments in Dynamic CompressionAuthors: Mike W. J. Arun, Prasannaah Hadagali, Klaus Driesslein, William Curry, Narayan Yoganandan, and Frank A. Pintar—Department of Neurosurgery, Medical…
- Development of the CAVEMAN Human Body Model: Validation of Lower Extremity Sub-Injurious Response to Vertical Accelerative Loading Authors: Kent Butz, Chad Spurlock, Rajarshi Roy, Cameron Bell, Paul Barrett, Aaron Ward, Xudong Xiao, Allen Shirley, Colin Welch, Kevin…
- Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading ConditionsAuthors: Sajal Chirvi, Narayan Yoganandan, Mike Schlick, William Curry—Department of Neurosurgery, Medical College of Wisconsin/VA Medical Center; Frank Pintar—Department of…
- Human Shoulder Response to High Velocity Lateral ImpactAuthors: Matthieu Lebarbé—CEESAR, Nanterre, France; Philippe Vezin—Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622, Lyon, France; Frédéric…
- Neck Injury Response in High Vertical Accelerations and its Algorithmical Formalization to Mitigate Neck InjuriesAuthors: Julie Klima, Jian Kang, AnnMarie Meldrum, Steven Pankiewicz—Tank Automotive Research, Development, and Engineering Center Abstract Tank Automotive Research, Development…
- New Reference PMHS Tests to Assess Whole-Body Pedestrian Impact Using a Simplified Generic Vehicle Front-EndAuthors: Eric Song, Philippe Petit, and Xavier Trosseille—LAB PSA Renault; Jérôme Uriot, Pascal Potier, and Denis Dubois—CEESAR; Richard Douard—Université Paris…
- Occupant Kinematics in Simulated Autonomous Driving Vehicle Collisions: Influence of Seating Position, Direction and AngleAuthors: Yuichi Kitagawa, Shigeki Hayashi, Katsunori Yamada, Mitsuaki Gotoh—Toyota Motor Corporation Abstract This two-part study analyzed occupant kinematics in simulated…
- Optimal Specifications for the Advanced Pedestrian Legform ImpactorAuthors: Takahiro Isshiki, Jacobo Antona-Makoshi, and Atsuhiro Konosu—Japan Automobile Research Institute; Yukou Takahashi—Japan Automobile Manufacturers Association Abstract This study addresses…
- Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal CrashesAuthors: Jingwen Hu and Matthew P. Reed—University of Michigan Transportation Research Institute; Jonathan D. Rupp—Emory University School of Medicine; Kurt…
- Strain-rate Dependency of Axonal Tolerance for Uniaxial StretchingAuthors: Hiromichi Nakadate, Evrim Kurtoglu, Hidenori Furukawa, Shoko Oikawa, and Shigeru Aomura—Graduate School of System Design, Tokyo Metropolitan University; Akira…