Authors: Michelle M. Murach, Yun-Seok Kang, John H. Bolte, David Stark, Rakshit Ramachandra, and Amanda M. Agnew—Injury Biomechanics Research Center, The Ohio State University; Kevin Moorhouse and Jason Stammen—National Highway Traffic Safety Administration, Vehicle Research and Test Center
Abstract
Thoracic injuries continue to be a major health concern in motor vehicle crashes. Previous thoracic research has focused on 50th percentile males and utilized scaling techniques to apply results to different demographics. Individual rib testing offers the advantage of capturing demographic differences; however, understanding of rib properties in the context of the intact thorax is lacking. Therefore, the objective of this study was to obtain the data necessary to develop a transfer function between individual rib and thoracic response. A series of non-injurious frontal impacts were conducted on six PMHS, creating a loading environment commensurate to previously published individual rib testing. Each PMHS was tested in four tissue states: intact, intact with upper limbs removed, denuded, and eviscerated. Following eviscerated thoracic testing, eight individual mid-level ribs from each PMHS were removed and loaded to failure. A simplified model in which ribs of each thorax are treated as parallel springs was utilized to evaluate the ability of individual rib response data to predict each subject’s eviscerated thoracic response. On average across subjects, denuded thoraces retained 89% and eviscerated thoraces retained 46% of intact force. Similarly, denuded thoraces retained 70% and eviscerated thoraces retained 30% of intact stiffness. The rib model did not adequately predict eviscerated thoracic response but provided a better understanding of the influence of connective tissue on a rib’s behavior with-in the thorax. Results of this study could be used in conjunction with the database of individual rib test results to improve thoracic response targets and help assess biofidelity of current anthropomorphic test devices.
Type: Full Paper
Keywords: Thorax, rib, force, stiffness, frontal
© Stapp Association, 2018
Access Additional Papers from This Volume
View additional Full Papers from the Stapp Car Crash Journal, Volume 62.
- A Reanalysis of Experimental Brain Strain Data: Implication for Finite Element Head Model ValidationAuthors: Zhou Zhou, Xiaogai Li, and Svein Kleiven—Neuronic Engineering, KTH Royal Institute of Technology; Chirag S. Shah—Humanetics Innovative Solutions, Inc.;…
- Analysis of the Frequency and Mechanism of Injury to Warfighters in the Under-body Blast EnvironmentAuthors: Kerry Danelson, Laura Watkins, Jonathon Hendricks—Wake Forest Department of Orthopaedic Surgery; Patricia Frounfelker—WIAMan Case Review Team; Karen Pizzolato-Heine, Ray…
- Assessment of Thoracic Response and Injury Risk Using the Hybrid III, THOR-M, and Post-Mortem Human Surrogates under Various Restraint Conditions in Full-Scale Frontal Sled TestsAuthors: Devon L Albert, Stephanie M Beeman, and Andrew R Kemper—Department of Biomedical Engineering and Mechanics, Virginia Tech Abstract A…
- Front Airbag Deployment Rates in Real-World Car Accidents in Japan and Implications for Activation of Accident Emergency Calling SystemAuthors: Yasuhiro Matsui—National Traffic Safety Environment Laboratory, Japan; Shoko Oikawa—Tokyo Metropolitan University, Japan Abstract Accident emergency calling systems (AECSs) are…
- Human Shoulder Response to Lateral Impact in Intermediate Loading Conditions Between High-Velocity, Short-Duration and Low-Velocity, Long-DurationAuthors: Matthieu Lebarbé, Pascal Potier, Jérôme Uriot, and Pascal Baudrit—CEESAR (Nanterre, France); Denis Lafont—DGA TT (Bourges, France); Richard Douard—Université Paris…
- Injury Risk Curves for the Human Cervical Spine from Inferior-to-Superior LoadingAuthors: Narayan Yoganandan—Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin; Sajal Chirvi—Department of Neurosurgery, Medical College of…
- Modelling of an Adjustable Generic Simplified Vehicle for Pedestrian Impact and Simulations of Corresponding Reference PMHS Tests Using the GHBMC 50th Percentile Male Pedestrian Simplified ModelAuthors: Eric Song and Phillipe Petit — LAB PSA Renault; Jérome Uriot — CEESAR Abstract In a previous study (Song…
- Quantification of Skeletal and Soft Tissue Contributions to Thoracic Response in a Dynamic Frontal Loading ScenarioAuthors: Michelle M. Murach, Yun-Seok Kang, John H. Bolte, David Stark, Rakshit Ramachandra, and Amanda M. Agnew—Injury Biomechanics Research Center,…
- Reference PMHS Sled Tests to Assess Submarining of the Small Female Authors: Xavier Trosseille and Philippe Petit—LAB PSA Peugeot-Citroën Renault; Jérôme Uriot, Pascal Potier, and Pascal Baudrit—CEESAR; Olivier Richard—Faurecia Automotive Seating;…
- Relation Between Sacroilium and Other Pelvic Fractures Based on Real-World Automotive AccidentsAuthors: Phillipe Petit and Xavier Trousseille—LAB PSA Peugeot Citroën Renault; Sophie Curry, Matthieu Lebarbé, and Pascal Baudrit—CEESAR; Sabine Compigne—Toyota Motor…
- Side Impact Assessment and Comparison of Appropriate Size and Age Equivalent Porcine Surrogates to Scaled Human Side Impact Response Biofidelity CorridorsAuthors: Jennifer L. Yaek, Christopher J. Andrecovich, and John M. Cavanaugh—Wayne State University; Stephen W. Rouhana—Vehicle Safety Sciences, LLC Abstract…
- Sources of Variability in Structural Bending Response of Pediatric and Adult Human Ribs in Dynamic Frontal ImpactsAuthors: Amanda M. Agnew, Michelle M. Murach, Victoria M. Dominguez, Akshara Sreedhar, Elina Misicka, Angela Harden, and John H. Bolte—Injury…
- The Effects of Inboard Shoulder Belt and Lap Belt Loadings on Chest Deflection Authors: Koji Mizuno and Ryoichi Yoshida—Nagoya University; Yutaka Nakajima, Yoshihiko Tanaka and Ryota Ishigaki—Autoliv Japan; Naruyuki Hosokawa and Yoshinori Tanaka—National…
- Validation of a Finite Element 50th Percentile THOR Anthropomorphic Test Device in Multiple Sled Test ConfigurationsAuthors: Kyle P. McNamara, Derek A. Jones, James P. Gaewsky, Ashley A. Weaver and Joel D. Stizel—Wake Forest School of…