Authors: Matthieu Lebarbé, Pascal Potier, Jérôme Uriot, and Pascal Baudrit—CEESAR (Nanterre, France); Denis Lafont—DGA TT (Bourges, France); Richard Douard—Université Paris René Descartes (Paris, France)
Abstract
The EuroSID-2re (ES-2re) Anthropomorphic Test Device (ATD) commonly known as the crash test dummy is also used in the military domain to assess the risk of injury of armored vehicles occupants from lateral impact. The loading conditions range from low velocity – long duration impacts (4 m/s – 50 ms) similar to the automotive domain, to high velocity – short duration impacts (28 m/s – 3 ms) corresponding to cases where the panel deforms under an explosion. The human shoulder response to lateral impact was investigated at bounds of the loading condition spectrum previously mentioned, and also at intermediate conditions (14 m/s – 9 ms) in previous studies. The aim of the current study is to provide additional insight at the intermediate loading conditions which are not found in the literature.
Eight pure lateral shoulder impact tests were performed on Post Mortem Human Subjects (PMHS) using an 8.1 kg rigid impactor at velocities ranging from 3.3 m/s to 8.8 m/s with the duration ranging from 25 ms to 35 ms. The PMHS were instrumented with accelerometers attached to the sternum, and the upper thoracic spine (T1 vertebra). Strain gages were glued onto the right and left clavicles and ribs 2 to 6. The shoulder force was measured at the interface with the impactor and the impact was filmed by high speed cameras (5000 fps) to track the YZ displacements of the impactor, T1 vertebra, and sternum in the laboratory frame.
Three shoulders out of the eight sustained AIS 2 injuries which included a clavicle fracture. The impactor forces ranged from 1200 to 4600 N. The PMHS accelerations ranged from 44 to 163 g at the sternum, and from 17 to 60 g at the T1 vertebra. The analysis of the strain gage signals revealed that the clavicle fractures occurred at the beginning of the impact and coincided with a peak force. An estimate of the acromion-to-shoulder compression (Cmax) was computed. It ranged from 0% to 15% for the non-injured shoulders, and from 19% to 28% for the injured shoulders.
This new PMHS test series will be used in a future work to develop a shoulder injury criterion for the ES-2re ATD that is relevant for the whole loading conditions spectrum of the military domain.
Type: Full Paper
Keywords: Shoulder, lateral impact, Post Mortem Human Subjects, PMHS, impactor, NATO, armored vehicle
© Stapp Association, 2018
Access Additional Papers from This Volume
View additional Full Papers from the Stapp Car Crash Journal, Volume 62.
- A Reanalysis of Experimental Brain Strain Data: Implication for Finite Element Head Model ValidationAuthors: Zhou Zhou, Xiaogai Li, and Svein Kleiven—Neuronic Engineering, KTH Royal Institute of Technology; Chirag S. Shah—Humanetics Innovative Solutions, Inc.;…
- Analysis of the Frequency and Mechanism of Injury to Warfighters in the Under-body Blast EnvironmentAuthors: Kerry Danelson, Laura Watkins, Jonathon Hendricks—Wake Forest Department of Orthopaedic Surgery; Patricia Frounfelker—WIAMan Case Review Team; Karen Pizzolato-Heine, Ray…
- Assessment of Thoracic Response and Injury Risk Using the Hybrid III, THOR-M, and Post-Mortem Human Surrogates under Various Restraint Conditions in Full-Scale Frontal Sled TestsAuthors: Devon L Albert, Stephanie M Beeman, and Andrew R Kemper—Department of Biomedical Engineering and Mechanics, Virginia Tech Abstract A…
- Front Airbag Deployment Rates in Real-World Car Accidents in Japan and Implications for Activation of Accident Emergency Calling SystemAuthors: Yasuhiro Matsui—National Traffic Safety Environment Laboratory, Japan; Shoko Oikawa—Tokyo Metropolitan University, Japan Abstract Accident emergency calling systems (AECSs) are…
- Human Shoulder Response to Lateral Impact in Intermediate Loading Conditions Between High-Velocity, Short-Duration and Low-Velocity, Long-DurationAuthors: Matthieu Lebarbé, Pascal Potier, Jérôme Uriot, and Pascal Baudrit—CEESAR (Nanterre, France); Denis Lafont—DGA TT (Bourges, France); Richard Douard—Université Paris…
- Injury Risk Curves for the Human Cervical Spine from Inferior-to-Superior LoadingAuthors: Narayan Yoganandan—Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin; Sajal Chirvi—Department of Neurosurgery, Medical College of…
- Modelling of an Adjustable Generic Simplified Vehicle for Pedestrian Impact and Simulations of Corresponding Reference PMHS Tests Using the GHBMC 50th Percentile Male Pedestrian Simplified ModelAuthors: Eric Song and Phillipe Petit — LAB PSA Renault; Jérome Uriot — CEESAR Abstract In a previous study (Song…
- Quantification of Skeletal and Soft Tissue Contributions to Thoracic Response in a Dynamic Frontal Loading ScenarioAuthors: Michelle M. Murach, Yun-Seok Kang, John H. Bolte, David Stark, Rakshit Ramachandra, and Amanda M. Agnew—Injury Biomechanics Research Center,…
- Reference PMHS Sled Tests to Assess Submarining of the Small Female Authors: Xavier Trosseille and Philippe Petit—LAB PSA Peugeot-Citroën Renault; Jérôme Uriot, Pascal Potier, and Pascal Baudrit—CEESAR; Olivier Richard—Faurecia Automotive Seating;…
- Relation Between Sacroilium and Other Pelvic Fractures Based on Real-World Automotive AccidentsAuthors: Phillipe Petit and Xavier Trousseille—LAB PSA Peugeot Citroën Renault; Sophie Curry, Matthieu Lebarbé, and Pascal Baudrit—CEESAR; Sabine Compigne—Toyota Motor…
- Side Impact Assessment and Comparison of Appropriate Size and Age Equivalent Porcine Surrogates to Scaled Human Side Impact Response Biofidelity CorridorsAuthors: Jennifer L. Yaek, Christopher J. Andrecovich, and John M. Cavanaugh—Wayne State University; Stephen W. Rouhana—Vehicle Safety Sciences, LLC Abstract…
- Sources of Variability in Structural Bending Response of Pediatric and Adult Human Ribs in Dynamic Frontal ImpactsAuthors: Amanda M. Agnew, Michelle M. Murach, Victoria M. Dominguez, Akshara Sreedhar, Elina Misicka, Angela Harden, and John H. Bolte—Injury…
- The Effects of Inboard Shoulder Belt and Lap Belt Loadings on Chest Deflection Authors: Koji Mizuno and Ryoichi Yoshida—Nagoya University; Yutaka Nakajima, Yoshihiko Tanaka and Ryota Ishigaki—Autoliv Japan; Naruyuki Hosokawa and Yoshinori Tanaka—National…
- Validation of a Finite Element 50th Percentile THOR Anthropomorphic Test Device in Multiple Sled Test ConfigurationsAuthors: Kyle P. McNamara, Derek A. Jones, James P. Gaewsky, Ashley A. Weaver and Joel D. Stizel—Wake Forest School of…