Authors: David B. Stark, Arrianna K. Willis, Zach Eshelman, Yun-Seok Kang, Rakshit Ramachandra, and John H. Bolte IV—Injury Biomechanics Research Center, The Ohio State University; Matthew McCrink—Aerospace Research Center, The Ohio State University
Abstract
Unmanned aircraft systems (UAS), commonly known as drones, are part of a new and budding industry in the United States. Economic and public benefits associated with UAS use across multiple commercial sectors are driving new regulations which alter the stringent laws currently restricting UAS flights over people. As new regulations are enacted and more UAS populate the national airspace, there is a need to both understand and quantify the risk associated with UAS impacts with the uninvolved public. The purpose of this study was to investigate the biomechanical response and injury outcomes of Post Mortem Human Surrogates (PMHS) subjected to UAS head impacts. For this work, PMHS were tested with differing UAS vehicles at multiple impact angles, locations and speeds. Using a custom designed launching device, UAS vehicles were accelerated into the frontal, parietal, or vertex portions of subjects’ craniums at speeds up to 22 m/s. Of the 35 UAS impacts carried out, one AIS 2+ injury was observed: a 13 cm linear skull fracture resulting from a Phantom 3 impact. Additionally, injury risk curves used in automotive testing were found to over predict the risk of injury in UAS impact scenarios. Finally, localized skull deformation was observed during severe impacts; the effect that this deformation had on measured kinematics should be further evaluated. Overall, the study found that AIS 2+ head injuries may occur as a result of UAS impacts and that automotive injury metrics may not be able to accurately predict head injury risk in UAS impact scenarios.
Type: Full Paper
Keywords: Drone, unmanned aircraft system, head, brain, head kinematics, acceleration, injury risk, skull fracture
© Stapp Association, 2019
Access Additional Papers from This Volume
View additional Full Papers from the Stapp Car Crash Journal, Volume 63.
- A Novel Approach to Scaling Age-, Sex-, and Body Size-Dependent Thoracic Responses using Structural Properties of Human RibsAuthors: Yun-Seok Kang, John H. Bolte IV, and Amanda M. Agnew—Injury Biomechanics Research Center, The Ohio State University; Jason Stammen…
- A Sensor Suite for Toeboard Three-Dimensional Deformation Measurement During CrashAuthors: Mengyu Song and Cong Chen—Virginia Polytechnic Institute and State University; Tomonari, Furukawa—University of Virginia; Azusa Nakata and Shinsuke Shibata—Honda…
- A Shoulder Injury Criterion for the EuroSID-2re Applicable in a Large Loading Condition Spectrum of the Military DomainAuthors: Matthieu Lebarbé and Pascal Baudrit—CEESAR; Denis Lafont—DGA-TT, French Ministry of Defense Abstract The EuroSID-2re (ES-2re) is an Anthropometric Test…
- Analysis of Force Mitigation by Boots in Axial Impacts using a Lower Leg Finite Element ModelAuthors: Carolyn E. Hampton, Michael Kleinberger—U.S. Army Research Laboratory; Michael Schlick, Narayan Yoganandan, and Frank A. Pintar—Medical College of Wisconsin…
- Assessment of Several THOR Thoracic Injury Criteria based on a New Post Mortem Human Subject Test Series and RecommendationsAuthors: Xavier Trosseille and Philippe Petit—LAB PSA Renault; Jérôme Uriot, Pascal Potier, and Pascal Baudrit—CEESAR Abstract Several studies, available in…
- Biofidelic Evaluation of the Large Omni-Directional Child Anthropomorphic Test Device in Low Speed Loading ConditionsAuthors: Thomas Seacrist, Jalaj Maheshwari, and Valentina Graci—The Children’s Hospital of Philadelphia; Christine M. Holt, Raul Akkem, and Gregory Chingas—Drexel…
- Brain Strain from Motion of Sparse MarkersAuthors: Zhou Zhou, Xiaogai Li, and Svein Kleiven—KTH Royal Institute of Technology; Warren N. Hardy—Virginia Tech-Wake Forest Center for Injury…
- Development of a Subhuman Primate Brain Finite Element Model to Investigate Brain Injury Thresholds Induced by Head RotationAuthors: Tushar Arora and Liying Zhang—Wayne State University; Priya Prasad—Prasad Engineering, LLC Abstract An anatomically detailed rhesus monkey brain FE…
- Factors Affecting Child Injury Risk in Motor-Vehicle CrashesAuthors: Marco Benedetti, Kathleen D. Klinich, Miriam A. Manary, and Carol A.C. Flannagan—University of Michigan Transportation Research Institute Abstract Current…
- Far Side Impact Injury Threshold Recommendations Based on 6 Paired WorldSID / Post Mortem Human Subjects TestsAuthors: Philippe Petit and Xavier Trosseille—LAB PSA Peugeot Citroën Renault (Nanterre – France); Jérôme Uriot, David Poulard, Pascal Potier, and…
- Human Response and Injury Resulting from Head Impacts with Unmanned Aircraft SystemsAuthors: David B. Stark, Arrianna K. Willis, Zach Eshelman, Yun-Seok Kang, Rakshit Ramachandra, and John H. Bolte IV—Injury Biomechanics Research…
- Kinematic and Biomechanical Response of Post-Mortem Human Subjects Under Various Pre-Impact Postures to High-Rate Vertical Loading ConditionsAuthors: Lauren Wood Zaseck, Anne C. Bonifas, Carl S. Miller, Nichole Ritchie Orton, and Matthew P. Reed—University of Michigan Transportation…
- Pedestrian Detection During Vehicle Backing Maneuvers Using Ultrasonic Parking SensorsAuthors: Yasuhiro Matsui and Naruyuki Hosokawa—National Traffic Safety and Environment Laboratory, Japan; Shoko Oikawa—Tokyo Metropolitan University, Japan Abstract Ultrasonic parking…
- PMHS and WorldSID Kinematic and Injury Response in Far-Side Events in a Vehicle-Based Test EnvironmentAuthors: Daniel Perez-Rapela, John-Paul Donlon, Jason L. Forman, and Jeff R. Crandall—University of Virginia, Center for Applied Biomechanics; Bengt Pipkorn…
- Response Ratio Development for Lateral Pendulum Impact with Porcine Thorax and Abdomen Surrogate EquivalentsAuthors: Jennifer L. Yaek and John M. Cavanaugh—Wayne State University; Stephen W. Rouhana—Vehicle Safety Sciences LLC Abstract There has been…