Authors: Lauren Wood Zaseck, Anne C. Bonifas, Carl S. Miller, Nichole Ritchie Orton, and Matthew P. Reed—University of Michigan Transportation Research Institute; Constantine K. Demetropoulos, Kyle A. Ott, Christopher J. Dooley, Nathanael P. Kuo, Leah M. Strohsnitter, Joseph R. Andrist, Mary E. Luongo, David G. Drewry III, and Andrew C. Merkle—The John Hopkins University Applied Physics Laboratory; Jonathan D. Rupp—Emory University
Abstract
Limited data exist on the injury tolerance and biomechanical response of humans to high-rate, under-body blast (UBB) loading conditions that are commonly seen in current military operations, and there are no data examining the influence of occupant posture on response. Additionally, no anthropomorphic test device (ATD) currently exists that can properly assess the response of humans to high-rate UBB loading. Therefore, the purpose of this research was to examine the response of post-mortem human surrogates (PMHS) in various seated postures to high-rate, vertical loading representative of those conditions seen in theater. In total, six PMHS tests were conducted using loading pulses applied directly to the pelvis and feet of the PMHS: three in an acute posture (foot, knee, and pelvis angles of 75°, 75°, and 36°, respectively), and three in an obtuse posture (15° reclined torso, and foot, knee, and pelvis angles of 105°, 105°, and 49.5°, respectively). Tests were conducted with a seat velocity pulse that peaked at ~4 m/s with a 30-40 ms time to peak velocity (TTP) and a floor velocity that peaked at 6.9-8.0 m/s (2-2.75 ms TTP). Posture condition had no influence on skeletal injuries sustained, but did result in altered leg kinematics, with leg entrapment under the seat occurring in the acute posture, and significant forward leg rotations occurring in the obtuse posture. These data will be used to validate a prototype ATD meant for use in high-rate UBB loading scenarios.
Type: Full Paper
Keywords: Under body blast; post-mortem human surrogate; anthropomorphic test device; vertical loading
© Stapp Association, 2019
Access Additional Papers from This Volume
View additional Full Papers from the Stapp Car Crash Journal, Volume 63.
- A Novel Approach to Scaling Age-, Sex-, and Body Size-Dependent Thoracic Responses using Structural Properties of Human RibsAuthors: Yun-Seok Kang, John H. Bolte IV, and Amanda M. Agnew—Injury Biomechanics Research Center, The Ohio State University; Jason Stammen…
- A Sensor Suite for Toeboard Three-Dimensional Deformation Measurement During CrashAuthors: Mengyu Song and Cong Chen—Virginia Polytechnic Institute and State University; Tomonari, Furukawa—University of Virginia; Azusa Nakata and Shinsuke Shibata—Honda…
- A Shoulder Injury Criterion for the EuroSID-2re Applicable in a Large Loading Condition Spectrum of the Military DomainAuthors: Matthieu Lebarbé and Pascal Baudrit—CEESAR; Denis Lafont—DGA-TT, French Ministry of Defense Abstract The EuroSID-2re (ES-2re) is an Anthropometric Test…
- Analysis of Force Mitigation by Boots in Axial Impacts using a Lower Leg Finite Element ModelAuthors: Carolyn E. Hampton, Michael Kleinberger—U.S. Army Research Laboratory; Michael Schlick, Narayan Yoganandan, and Frank A. Pintar—Medical College of Wisconsin…
- Assessment of Several THOR Thoracic Injury Criteria based on a New Post Mortem Human Subject Test Series and RecommendationsAuthors: Xavier Trosseille and Philippe Petit—LAB PSA Renault; Jérôme Uriot, Pascal Potier, and Pascal Baudrit—CEESAR Abstract Several studies, available in…
- Biofidelic Evaluation of the Large Omni-Directional Child Anthropomorphic Test Device in Low Speed Loading ConditionsAuthors: Thomas Seacrist, Jalaj Maheshwari, and Valentina Graci—The Children’s Hospital of Philadelphia; Christine M. Holt, Raul Akkem, and Gregory Chingas—Drexel…
- Brain Strain from Motion of Sparse MarkersAuthors: Zhou Zhou, Xiaogai Li, and Svein Kleiven—KTH Royal Institute of Technology; Warren N. Hardy—Virginia Tech-Wake Forest Center for Injury…
- Development of a Subhuman Primate Brain Finite Element Model to Investigate Brain Injury Thresholds Induced by Head RotationAuthors: Tushar Arora and Liying Zhang—Wayne State University; Priya Prasad—Prasad Engineering, LLC Abstract An anatomically detailed rhesus monkey brain FE…
- Factors Affecting Child Injury Risk in Motor-Vehicle CrashesAuthors: Marco Benedetti, Kathleen D. Klinich, Miriam A. Manary, and Carol A.C. Flannagan—University of Michigan Transportation Research Institute Abstract Current…
- Far Side Impact Injury Threshold Recommendations Based on 6 Paired WorldSID / Post Mortem Human Subjects TestsAuthors: Philippe Petit and Xavier Trosseille—LAB PSA Peugeot Citroën Renault (Nanterre – France); Jérôme Uriot, David Poulard, Pascal Potier, and…
- Human Response and Injury Resulting from Head Impacts with Unmanned Aircraft SystemsAuthors: David B. Stark, Arrianna K. Willis, Zach Eshelman, Yun-Seok Kang, Rakshit Ramachandra, and John H. Bolte IV—Injury Biomechanics Research…
- Kinematic and Biomechanical Response of Post-Mortem Human Subjects Under Various Pre-Impact Postures to High-Rate Vertical Loading ConditionsAuthors: Lauren Wood Zaseck, Anne C. Bonifas, Carl S. Miller, Nichole Ritchie Orton, and Matthew P. Reed—University of Michigan Transportation…
- Pedestrian Detection During Vehicle Backing Maneuvers Using Ultrasonic Parking SensorsAuthors: Yasuhiro Matsui and Naruyuki Hosokawa—National Traffic Safety and Environment Laboratory, Japan; Shoko Oikawa—Tokyo Metropolitan University, Japan Abstract Ultrasonic parking…
- PMHS and WorldSID Kinematic and Injury Response in Far-Side Events in a Vehicle-Based Test EnvironmentAuthors: Daniel Perez-Rapela, John-Paul Donlon, Jason L. Forman, and Jeff R. Crandall—University of Virginia, Center for Applied Biomechanics; Bengt Pipkorn…
- Response Ratio Development for Lateral Pendulum Impact with Porcine Thorax and Abdomen Surrogate EquivalentsAuthors: Jennifer L. Yaek and John M. Cavanaugh—Wayne State University; Stephen W. Rouhana—Vehicle Safety Sciences LLC Abstract There has been…