Authors: Carolyn E. Hampton, Michael Kleinberger—U.S. Army Research Laboratory; Michael Schlick, Narayan Yoganandan, and Frank A. Pintar—Medical College of Wisconsin at Zablocki Medical Center
Abstract
Lower extremity injuries caused by floor plate impacts through the axis of the lower leg are a major source of injury and disability for civilian and military vehicle occupants. A collection of PMHS pendulum impacts was revisited to obtain data for paired booted/unbooted test on the same leg. Five sets of paired pendulum impacts (10 experiments in total) were found using four lower legs from two PMHS. The PMHS size and age was representative of an average young adult male. In these tests, a PMHS leg was impacted by a 3.4 or 5.8 kg pendulum with an initial velocity of 5, 7, or 10 m/s (42-288 J). A matching LS-DYNA finite element model was developed to replicate the experiments and provide additional energy, strain, and stress data. Simulation results matched the PMHS data using peak values and CORA curve correlations. Experimental forces ranged between 1.9 and 12.1 kN experimentally and 2.0 and 11.7 kN in simulation. Combat boot usage reduced the peak force by 36% experimentally (32% in simulation) by compressing the sole and insole with similar mitigations for calcaneus strain. The simulated Von Mises stress contours showed the boot both mitigating and shifting stress concentrations from the calcaneus in unbooted impacts to the talus-tibia joint in the booted impacts, which may explain why some previous studies have observed shifts to tibia injuries with boot or padding usage.
Type: Full Paper
Keywords: Lower extremity, biomechanics, boot, force, strain, underbody blast, PMHS, finite element
© Stapp Association, 2019
Access Additional Papers from This Volume
View additional Full Papers from the Stapp Car Crash Journal, Volume 63.
- A Novel Approach to Scaling Age-, Sex-, and Body Size-Dependent Thoracic Responses using Structural Properties of Human RibsAuthors: Yun-Seok Kang, John H. Bolte IV, and Amanda M. Agnew—Injury Biomechanics Research Center, The Ohio State University; Jason Stammen…
- A Sensor Suite for Toeboard Three-Dimensional Deformation Measurement During CrashAuthors: Mengyu Song and Cong Chen—Virginia Polytechnic Institute and State University; Tomonari, Furukawa—University of Virginia; Azusa Nakata and Shinsuke Shibata—Honda…
- A Shoulder Injury Criterion for the EuroSID-2re Applicable in a Large Loading Condition Spectrum of the Military DomainAuthors: Matthieu Lebarbé and Pascal Baudrit—CEESAR; Denis Lafont—DGA-TT, French Ministry of Defense Abstract The EuroSID-2re (ES-2re) is an Anthropometric Test…
- Analysis of Force Mitigation by Boots in Axial Impacts using a Lower Leg Finite Element ModelAuthors: Carolyn E. Hampton, Michael Kleinberger—U.S. Army Research Laboratory; Michael Schlick, Narayan Yoganandan, and Frank A. Pintar—Medical College of Wisconsin…
- Assessment of Several THOR Thoracic Injury Criteria based on a New Post Mortem Human Subject Test Series and RecommendationsAuthors: Xavier Trosseille and Philippe Petit—LAB PSA Renault; Jérôme Uriot, Pascal Potier, and Pascal Baudrit—CEESAR Abstract Several studies, available in…
- Biofidelic Evaluation of the Large Omni-Directional Child Anthropomorphic Test Device in Low Speed Loading ConditionsAuthors: Thomas Seacrist, Jalaj Maheshwari, and Valentina Graci—The Children’s Hospital of Philadelphia; Christine M. Holt, Raul Akkem, and Gregory Chingas—Drexel…
- Brain Strain from Motion of Sparse MarkersAuthors: Zhou Zhou, Xiaogai Li, and Svein Kleiven—KTH Royal Institute of Technology; Warren N. Hardy—Virginia Tech-Wake Forest Center for Injury…
- Development of a Subhuman Primate Brain Finite Element Model to Investigate Brain Injury Thresholds Induced by Head RotationAuthors: Tushar Arora and Liying Zhang—Wayne State University; Priya Prasad—Prasad Engineering, LLC Abstract An anatomically detailed rhesus monkey brain FE…
- Factors Affecting Child Injury Risk in Motor-Vehicle CrashesAuthors: Marco Benedetti, Kathleen D. Klinich, Miriam A. Manary, and Carol A.C. Flannagan—University of Michigan Transportation Research Institute Abstract Current…
- Far Side Impact Injury Threshold Recommendations Based on 6 Paired WorldSID / Post Mortem Human Subjects TestsAuthors: Philippe Petit and Xavier Trosseille—LAB PSA Peugeot Citroën Renault (Nanterre – France); Jérôme Uriot, David Poulard, Pascal Potier, and…
- Human Response and Injury Resulting from Head Impacts with Unmanned Aircraft SystemsAuthors: David B. Stark, Arrianna K. Willis, Zach Eshelman, Yun-Seok Kang, Rakshit Ramachandra, and John H. Bolte IV—Injury Biomechanics Research…
- Kinematic and Biomechanical Response of Post-Mortem Human Subjects Under Various Pre-Impact Postures to High-Rate Vertical Loading ConditionsAuthors: Lauren Wood Zaseck, Anne C. Bonifas, Carl S. Miller, Nichole Ritchie Orton, and Matthew P. Reed—University of Michigan Transportation…
- Pedestrian Detection During Vehicle Backing Maneuvers Using Ultrasonic Parking SensorsAuthors: Yasuhiro Matsui and Naruyuki Hosokawa—National Traffic Safety and Environment Laboratory, Japan; Shoko Oikawa—Tokyo Metropolitan University, Japan Abstract Ultrasonic parking…
- PMHS and WorldSID Kinematic and Injury Response in Far-Side Events in a Vehicle-Based Test EnvironmentAuthors: Daniel Perez-Rapela, John-Paul Donlon, Jason L. Forman, and Jeff R. Crandall—University of Virginia, Center for Applied Biomechanics; Bengt Pipkorn…
- Response Ratio Development for Lateral Pendulum Impact with Porcine Thorax and Abdomen Surrogate EquivalentsAuthors: Jennifer L. Yaek and John M. Cavanaugh—Wayne State University; Stephen W. Rouhana—Vehicle Safety Sciences LLC Abstract There has been…