Yun-Seok Kang, John H. Bolte IV, and Amanda M. Agnew — Injury Biomechanics Research Center, The Ohio State University
Jason Stammen and Kevin Moorhouse — National Highway Traffic Safety Administration
Abstract
Thoracic injuries are frequently observed in motor vehicle crashes, and rib fractures are the most common of those injuries. Thoracic response targets have previously been developed from data obtained from post-mortem human subject (PMHS) tests in frontal loading conditions, most commonly of mid-size males. Traditional scaling methods are employed to identify differences in thoracic response for various demographic groups, but it is often unknown if these applications are appropriate, especially considering the limited number of tested PMHS from which those scaling factors originate. Therefore, the objective of this study was to establish a new scaling approach for generating age-, sex-, and body size-dependent thoracic responses utilizing structural properties of human ribs from direct testing of various demographics. One-hundred forty-seven human ribs (140 adult; 7 pediatric) from 132 individuals (76 male; 52 female; 4 pediatric) ranging in age from 6 to 99 years were included in this study. Ribs were tested at 2 m/s to failure in a frontal impact scenario. Force and displacement for individual ribs were used to develop new scaling factors, with a traditional mid-size biomechanical target as a baseline response. This novel use of a large, varied dataset of dynamic whole rib responses offers vast possibilities to utilize existing biomechanical data in creative ways to reduce thoracic injuries in diverse vehicle occupants.
Kang YS, Bolte IV JH, Stammen J, Moorhouse K, Agnew AM. A Novel Approach to Scaling Age-, Sex-, and Body Size-Dependent Thoracic Responses using Structural Properties of Human Ribs. Stapp Car Crash J. 2019 Nov;63:307-329. doi: 10.4271/2019-22-0013.
Pages: 24
Event: 63rd Stapp Car Crash Conference