Authors: Gretchen Baker, Rosalie Connell—Injury Biomechanics Research Center, The Ohio State University; Carrie Rhodes—Passenger Safety Program, Nationwide Children’s Hospital; Julie Mansfield—Injury Biomechanics Research Center, The Ohio State University
Abstract
This study compared modern vehicle and booster geometries with relevant child anthropometries. Vehicle geometries (seat length, seat pan height, shoulder belt outlet height, and roof height) were obtained for 275 center and outboard rear seating positions of US vehicles (MY 2009–2022). Measurements of 85 US boosters (pan height and pan length) and anthropometries of 80 US children between 4–14yo (seated height, thigh length, leg length, and seated shoulder height) were also collected. Comparisons were made between vehicles, boosters, and child anthropometries. Average vehicle seat lengths exceeded child thigh lengths (+9.5cm). Only 16.4% of seating positions had seat lengths less than the child thigh length mean+1SD. Even for children at least 145cm, only 18.8% had thigh lengths greater than the average vehicle seat length. Child thigh lengths were more comparable with average booster seat pan lengths for all multi-mode and high-back designs (-2.0cm) and low-back boosters (+3.1cm). The average observed booster pan height (9.9cm) would help most children achieve seated shoulder heights similar to the Hybrid III 5th percentile Female ATD. Compared to vehicle seats, booster geometries were more compatible with child thigh lengths and assist children in achieving seated shoulder heights more comparable to the vehicle restraint system. This emphasizes the continued need for shorter vehicle seat cushion lengths for these occupants and the need to educate caregivers and promote booster recommendations which highlight the importance of achieving proper belt fit and avoiding slouched postures, even for children greater than 8 years and/or 145cm.
Type: Full Paper
Keywords: Vehicle geometry, belt-positioning booster, child anthropometry
© Stapp Association, 2024
Access Additional Papers from This Volume
View additional Full Papers from the Stapp Car Crash Journal, Volume 68.
- Comparison of Bending Properties in Paired Human Ribs with and without Costal CartilageAuthors: Rose Schaffer, Yun-Seok Kang, Angelo Marcallini, Jr.—Injury Biomechanics Research Center, The Ohio State University; Bengt Pipkorn—Autoliv Research, Sweden; John…
- Effect of A-Pillar Blind Spots on a Driver’s Pedestrian Visibility during Vehicle Turns at an IntersectionAuthors: Yasuhiro Matsui—National Traffic Safety and Environment Laboratory, Japan; Shoko Oikawa—Tokyo Metropolitan University, Japan Abstract This study aims to elucidate…
- Effects of Head Restraint (HR) Interference on Child Restraint System (CRS) Performance in Frontal and Far-Side ImpactsAuthors: Julie Mansfield—Injury Biomechanics Research Center, The Ohio State University Abstract Forward-facing child restraint systems (FF CRS) and high-back boosters…
- Evaluation of Child Anthropometries in Relation to Modern Vehicle Seat and Booster DimensionsAuthors: Gretchen Baker, Rosalie Connell—Injury Biomechanics Research Center, The Ohio State University; Carrie Rhodes—Passenger Safety Program, Nationwide Children’s Hospital; Julie…
- Isolated Rib Response and Fracture Prediction for Young Mid-Size Male, Enabled by Population Specific Material Models and GeometryAuthors: Miguel Corrales, Duane Cronin—Department of Mechanical and Mechatronics Engineering, University of Waterloo; Sven Holcombe—Department of Surgery, University of Michigan;…
- Standardized Assessment of Gravity Settling Human Body Models for Virtual TestingAuthors: B. Wade von Kleeck III, Juliette Caffrey, Ashley A. Weaver, and F. Scott Gayzik—Biomedical Engineering, Wake Forest University School…