Authors: Olivier Richard—Faurecia Automotive Seating; Matthieu Lebarbé and Jérôme Uriot—CEESAR; Xavier Trosseille and Philippe Petit—LAB PSA Peugeot-Citroën Renault; Z. Jerry Wang—Humanetics Innovative Solutions; Ellen Lee—NHTSA
Abstract
The Test Device for Human Occupant Restraint (THOR) is an advanced crash test dummy designed for frontal impact. Originally released in a 50th percentile male version (THOR-50M), a female 5th version (THOR-05F) was prototyped in 2017 (Wang et al., 2017) and compared with biofidelity sub-system tests (Wang et al., 2018). The same year, Trosseille et al. (2018) published response corridors using nine 5th percentile female Post Mortem Human Subjects (PMHS) tested in three sled configurations, including both submarining and non-submarining cases.
The goal of this paper is to provide an initial evaluation of the THOR-05F biofidelity in a full-scale sled test, by comparing its response with the PMHS corridors published by Trosseille et al. (2018).
Significant similarities between PMHS and THOR-05F were observed: as in Trosseille et al. (2018), the THOR-05F did not submarine in configuration 1, and submarined in configurations 2 and 3. The lap belt tension and seat forces were similar in magnitude. For configurations 2 and 3, the pelvis excursions were of the same order of magnitude between both human surrogates. However, significant differences were also observed: compared to the PMHS, the THOR-05F showed shoulder belt forces that were 1.6 to 2.1 times higher in magnitude, and lap belt force time histories that were delayed by 10 to 20 ms. In configuration 1, the chest and pelvis resultant accelerations of the dummy were delayed as well, and the pelvis excursion and rotation more than doubled that of the PMHS.
Type: Full Paper
Keywords: Frontal impact, THOR-05F, Post Mortem Human Subject, submarining, biofidelity
© Stapp Association, 2021
Access Additional Papers from This Volume
View additional Full Papers from the Stapp Car Crash Journal, Volume 65.
- Analysis of Lap Belt Fit to Human Subjects using CT ImagesAuthors: Yoshihiko Tanaka, Atsushi Nakashima, Haijie Feng, and Koji Mizuno—Nagoya University; Minoru Yamada, Yoshitake Yamada, Yoichi Yokoyama, and Masahito Jinzaki—Keio…
- Instantaneous Brain Strain Estimation for Automotive Head Impacts via Deep LearningAuthors: Shaoju Wu, Wei Zhao, and Songbai Ji—Department of Biomedical Engineering, Worcester Polytechnic; Saeed Barbat—The Ford Company; Jesse Ruan—Tianjin University…
- Lives Saved by Accelerating the Implementation of Vehicle Safety Technology in New South WalesAuthors: Johan Strandroth—Strandroth Inc, Lösningar Pty Ltd; Ralston Fernandes, Greer Banyer, and Antonietta Cavallo—Transport for New South Wales, Centre for…
- Occupant-Based Injury Severity PredictionAuthors: Susan H. Owen and Jeffrey W. Joyner—Global Product Safety & Systems, General Motors; Peng Zhang and Stewart C. Wang—University…
- Pedestrian Detection before Motor Vehicle Moving Off Maneuvers using Ultrasonic Sensors in the Vehicle FrontAuthors: Yasuhiro Matsui—National Traffic Safety and Environment Laboratory, Japan; Shoko Oikawa—Tokyo Metropolitan University Abstract Vehicles that start moving from a…
- Quantifying the Effect of Pelvis Fracture on Lumbar Spine Compression during High-rate Vertical LoadingAuthors: David R. Barnes—SURVICE Engineering Co.; Narayan Yoganandan, Jason Moore, John Humm, and Frank Pintar—The Medical College of Wisconsin; Kathryn…
- Self-reported Non-nominal Sitting in Passengers is Influenced by Age and HeightAuthors: Adam D. Goodworth and Jeremiah Canada—Westmont College Abstract Automotive safety devices, such as airbags and seatbelts, are generally designed…
- THOR-05F Response in Sled Tests Inducing Submarining and Comparison with PMHS Response CorridorsAuthors: Olivier Richard—Faurecia Automotive Seating; Matthieu Lebarbé and Jérôme Uriot—CEESAR; Xavier Trosseille and Philippe Petit—LAB PSA Peugeot-Citroën Renault; Z. Jerry…