Chris O’Connor, Agnes Kim and Tim Barrette — Ford Motor Company
Jeff Dix — Nissan North America
Abstract
In order to evaluate the THOR-50M as a front impact Anthropomorphic Test Device (ATD) for vehicle safety design, the ATD was compared to the H3-50M in matching vehicle crash tests for 20 unique vehicle models from 2 vehicle manufacturers. For the belted driver condition, a total of fifty-four crash tests were investigated in the 56.3 km/h (35 mph) front rigid barrier impact condition. Four more tests were compared for the unbelted driver and right front passenger at 40.2 km/h (25 mph) in the flat frontal and 30-degree right oblique rigid barrier impact conditions. The two ATDs were also evaluated for their ability to predict injury risk by comparing their fleet average injury risk to Crash Investigation Sampling System (CISS) accident data for similar conditions. The differences in seating position and their effect on ATD responses were also investigated.
This study showed that the belted THOR-50M injury responses were higher than the H3-50M by 25%-180%, in all reported ATD responses, except chest acceleration. For one unbelted condition, the THOR-50M reported 200%-300% higher neck responses than the H3-50M, primarily due to head contact to the roof structure in a mid-sized sedan. The THOR-50M overpredicted the injury risk based on chest deflection compared to the CISS accident data by at least a factor of 4 times. The THOR-50M also overpredicted the injury risk based on BrIC by at least a factor of 10 times. Future work is needed to investigate these overpredictions with respect to ATD construction, injury risk curves, and seating procedures.
O’Connor C, Kim A, Barrette T, Dix J. A Comparison of the Mid-Size Male THOR and Hybrid III ATDs in Vehicle Frontal Crash Tests. Stapp Car Crash J. 2022 Nov;66:143-173. doi: 10.4271/2022-22-0005.
Pages: 32
Event: 66th Stapp Car Crash Conference