Authors: Hollie A. Pietsch and David R. Weyland—US Army Tank Automotive Research, Development and Engineering Center (TARDEC)
Abstract
The Warrior Injury Assessment Manikin (WIAMan) was developed to assess injury in Live Fire Test and Evaluation (LFTE) and laboratory development tests of vehicles and vehicle technologies subjected to underbody blast (UBB) loading. While UBB events impart primarily vertical loading, the occupant location in the vehicle relative to the blast can result in some inherent non-vertical, or off-axis loading. In this study, the WIAMan Technology Demonstrator (TD) was subjected to 18 tests with a 350g, 5-ms time duration drop tower pulse using an original equipment manufacturer (OEM) energy attenuating seat in four conditions: purely vertical, 15° forward tilt, 15° rearward tilt, and 15° lateral tilt to simulate the partly off-axis loading of an UBB event. The WIAMan TD showed no signs of damage upon inspection. Time history data indicates the magnitude, curve shape, and timing of the response data were sensitive to the off-axis loading in the lower extremity, pelvis, and spine.
Type: Short Communication
© Stapp Association, 2018
Browse Contemporary Short Communications
View additional Short Communications presented at the 62nd Stapp Car Crash Conference, 2018.
- Comparative Responses of the PIPER 6YO Human Body Model and the Q6 ATD for Simulated Frontal and Lateral ImpactsAuthors: Shreyas Sarfare, Jalaj Maheshwari, and Aditya Belwadi—Center for Injury Research and Prevention, The Children’s Hospital of Philadelphia; Nhat Duong—Center…
- Development of Multiple Crash Events to Understand Occupant Behavior and Injury Based on Real-World AccidentsAuthors: Seok Ho Hong, Sung Soo Kim, Hyung Wook Park, Sung Hun Chang, and Jang Mook Lim—Hyundai-Motor Company; Brian William…
- Effect of Contact Separation on the Abdominal Response to Impact of a Human Body ModelAuthors: Philippe Beillas—Univ. Lyon, Université Claude Bernard Lyon 1, IFSTTAR, UMR_T9406, LBMC, F69622; Fabien Berthet—Transpolis SAS, Lyon Saint-Exupéry Aéroport Abstract…
- High-Speed Biplane X-Ray Head Impact Experiments in the Göttingen MinipigAuthors: Elizabeth McNeil, Amy Hermundstad, Pamela VandeVord, and Warren Hardy—Department of Biomedical Engineering and Mechanics, Virginia Tech Abstract Traumatic brain…
- Human Surrogate Finite Element Models Under Multi-Directional Loading: Applications of Aerospace Data for the Future of Automotive EnvironmentsAuthors: James P. Gaewsky, Derek A. Jones, Xin Ye, Bharath Koya, Kyle P. McNamara, Mona Z. Saffarzadeh, F. Scott Gayzik,…
- Next Steps for the IIHS Side Crashworthiness Evaluation ProgramAuthors: Raul A. Arbelaez, Becky C. Mueller, Matthew L. Brumbelow, and Eric R. Teoh—Insurance Institute for Highway Safety (IIHS) Abstract…
- Using Human Body Models to Assess Knee Ligament Injury in Knee HypertensionAuthors: Chin-Hsu Lin—General Motors Global Research & Development; Mitchell Hortin and Annette Irwin—General Motors Global Safety Center Abstract Shared autonomous…
- Warrior Injury Assessment Manikin Oblique Vertical TestingAuthors: Hollie A. Pietsch and David R. Weyland—US Army Tank Automotive Research, Development and Engineering Center (TARDEC) Abstract The Warrior…