Authors: Matthieu Lebarbé, Pascal Baudrit, and Pascal Potier—CEESAR; Philippe Petit, and Xavier Trosseille—LAB PSA Peugeot Citroën Renault; Sabine Compigne—Toyota Motor Europe NV/SA; Mitsutoshi Masuda and Takumi Fujii—Toyota Motor Corporation; Richard Douard—Université René Descartes, Paris
Abstract
The aim of this study was to investigate the sacroiliac joint injury mechanism. Two test configurations were selected from full scale car crashes conducted with the WorldSID 50th dummy resulting in high sacroiliac joint loads and low pubic symphysis force, i.e. severe conditions for the sacroiliac joint. The two test conditions were reproduced in laboratory using a 150-155 kg guided probe propelled respectively at 8 m/s and 7.5 m/s and with different shapes and orientations for the plate impacting the pelvis. Nine Post Mortem Human Subject (PMHS) were tested in each of the two configurations (eighteen PMHS in total). In order to get information on the time of fracture, eleven strain gauges were glued on the pelvic bone of each PMHS.
Results – In the first configuration, five PMHS out of nine sustained AIS2+ pelvic injuries. All five presented sacroiliac joint injuries associated with pubic area injuries. In the second configuration, four specimens out of nine sustained AIS2+ pelvic injuries. Two of them presented sacroiliac joint fractures associated with pubic area injuries. The other two presented injuries at the pubic area and acetabulum only. The strain gauges signals suggested that the pubic fractures occurred before the sacroiliac joint fractures in the great majority of the cases (five cases out of seven).
Conclusions – Even in the oblique impact conditions of the present study, the pubic symphysis area was observed to be the weakest zone of the pelvis and its failure the predominant cause of sacroiliac joint injuries. It was hypothesized that the failure of the pubic rami allowed the hemi-pelvis to rotate inward, and that this closing-book motion induced the failure of the sacroiliac joint.
Type: Full Paper
Keywords: Biomechanics, side impact, pelvic injuries, Post Mortem Human Subject, PMHS, fracture detection, pelvis,
sacroiliac joint
© Stapp Association, 2016
Access Additional Papers from This Volume
View additional Full Papers from the Stapp Car Crash Journal, Volume 60.
- Age-Specific Injury Risk Curves for Distributed, Anterior Thoracic Loading of Various Sizes of Adults Based on Sternal DeflectionsAuthors: Harold J. Mertz—General Motors Corporation (retired); Priya Prasad—Prasad Engineering, LLC; Dainius J. Dalmotas—D. J. Dalmotas Consulting, Inc.; Annette L….
- Association of Impact Velocity with Risks of Serious Injuries and Fatalities to Pedestrians in Commercial Truck-Pedestrian AccidentsAuthors: Yasuhiro Matsui and Shoko Oikawa—National Traffic Safety and Environment Laboratory, Japan; Kazuhiro Sorimachi, Akira Imanishi, and Takeshi Fujimura—Isuzu Advanced…
- Biomechanical Response of Military Booted and Unbooted Foot-Ankle-Tibia from Vertical LoadingAuthors: Frank A. Pintar, Michael B. Schlick, and Narayan Yoganandan—Medical College of Wisconsin and VA Medical Center; Liming Voo and…
- Biomechanical Responses of PMHS Subjected to Abdominal Seatbelt LoadingAuthors: Rakshit Ramachandra, Yun-Seok Kang, and John H. Bolte—The Ohio State University; Alena Hagedorn and Rodney Herriott—Transportation Research Center Inc.;…
- Development and Full Body Validation of a 5th Percentile Female Finite Element ModelAuthors: Matthew L. Davis, Bharath Koya, Jeremy M. Schap, and F. Scott Gayzik—Wake Forest School of Medicine, Virginia Tech-Wake Forest…
- Development of an Unbiased Validation Protocol to Assess the Biofidelity of Finite Element Head Models used in Prediction of Traumatic Brain InjuryAuthors: Chiara Giordano and Svein Kleiven—Royal Institute of Technology KTH, School of Technology and Health, Department of Neuronic Engineering Abstract This…
- Development, Evaluation, and Sensitivity Analysis of Parametric Finite Element Whole-Body Human Models in Side ImpactsAuthors: Eunjoo Hwang, Jingwen Hu, Cong Chen, Katelyn F. Klein, Carl S. Miller, and Matthew P. Reed—University of Michigan Transportation…
- Effect of Abdominal Loading Location on Liver Motion: Experimental Assessment using Ultrafast Ultrasound Imaging and Simulation with a Human Body ModelAuthors: Anicet Le Ruyet and Philippe Beillas—Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622, Lyon, France; Fabien…
- Evaluation of WIAMan Technology Demonstrator Biofidelity Relative to Sub-Injurious PMHS Response in Simulated Under-body Blast EventsAuthors: Hollie A. Pietsch, Kelly E. Bosch, and David R. Weyland—US Army Tank Automotive Research, Development, and Engineering Center; E….
- Investigation of Pelvic Injuries on Eighteen Post Mortem Human Subjects Submitted to Oblique Lateral ImpactsAuthors: Matthieu Lebarbé, Pascal Baudrit, and Pascal Potier—CEESAR; Philippe Petit, and Xavier Trosseille—LAB PSA Peugeot Citroën Renault; Sabine Compigne—Toyota Motor…
- Morphomics of the TalusAuthors: David Gorman and Ebram Handy—General Motors LLC and International Center for Automotive Medicine Fellows; Sikui Wang and Annette L….
- New Risk Curves for NHTSA’s Brain Injury Criterion (BrIC): Derivations and AssessmentsAuthors: Tony R. Laituri, Scott Henry, Kevin Pline, Guosong Li, Michael Frankstein, and Para Weerappuli—Ford Motor Company Abstract The National…
- Responses and Injuries to PMHS in Side-Facing and Oblique Seats in Horizontal Longitudinal Sled Tests per FAA Emergency Landing ConditionsAuthors: John R. Humm, Narayan Yoganandan, and Frank A. Pintar—Department of Neurosurgery, Medical College of Wisconsin; Richard L. DeWeese, David…
- The Effect of Rib Shape on StiffnessAuthors: Sven A. Holcombe— Department of Biomedical Engineering/International Center for Automotive Medicine, University of Michigan; Stewart C. Wang—International Center for…
- The Large Omnidirectional Child (LODC) ATD: Biofidelity Comparison with the Hybrid III 10 Year OldAuthors: Jason Stammen and Kevin Moorhouse—National Highway Traffic Safety Administration; Brian Suntay—Transportation Research Center Inc.; Michael Carlson and Yun-Seok Kang—The…
- Thoracic Injury Risk Curves for Rib Deflections of the SID-IIs Build Level DAuthors: Annette L. Irwin, Greg Crawford, David Gorman, and Sikui Wang—General Motors LLC; Harold J. Mertz—General Motors Corporation (retired) Abstract…
- Traffic Accidents Involving Cyclists Identifying Causal Factors Using Questionnaire Survey, Traffic Accident Data, and Real-World ObservationAuthors: Shoko Oikawa and Yasuhiro Matsui—National Traffic Safety and Environment Laboratory, Japan; Toshiya Hirose—Shibaura Institute of Technology, Japan; Shigeru Aomura—Tokyo…