Authors: David Gorman and Ebram Handy—General Motors LLC and International Center for Automotive Medicine Fellows; Sikui Wang and Annette L. Irwin—General Motors LLC; Stewart Wang—International Center for Automotive Medicine Fellows
Abstract
Previous studies of frontal crash databases reported that ankle fractures are among the most common lower extremity fractures. While not generally life threatening, these injuries can be debilitating. Laboratory research into the mechanisms of ankle fractures has linked dorsiflexion with an increased risk of tibia and fibula malleolus fractures. However, talus fractures were not produced in the laboratory tests and appear to be caused by more complex loading of the joint. In this study, an analysis of the National Automotive Sampling System – Crashworthiness Data System (NASS-CDS) for the years 2004-2013 was conducted to investigate foot-ankle injury rates in front seat occupants involved in frontal impact crashes. A logistic regression model was developed indicating occupant weight, impact delta velocity and gender to be significant predictors of talus fracture (p<0.05). Separately, a specific set of Computed Tomography (CT) scans from the International Center for Automotive Medicine (ICAM) scan database was used to characterize the talar dome. This control population consisted of 207 adults aged 18 to 84, with no foot or ankle trauma, and scans that had suitable coverage of the talus. Size of the talus was determined using medial-to-lateral width and anterior-to-posterior depth measurements. Geometry was assessed by evaluating the radius of the articulating talus and strength was assessed using a combination of cross sectional area and density. Demographics were studied to investigate correlation with talus measurements from the CT scan database. A multi-variable linear regression model of the morphomics showed gender to be statistically significant (p<0.05) for talus depth, width, cross-sectional area, radius and strength. Body Mass Index (BMI) was significant for depth and radius. Weight was significant for depth, width, density and strength. Stature was significant for depth, cross-sectional area, radius and strength. Age was significant for radius and density.
Type: Full Paper
Keywords: Ankle fracture, frontal vehicle crashes, injury risks, morphomics, talus
© Stapp Association, 2016
Access Additional Papers from This Volume
View additional Full Papers from the Stapp Car Crash Journal, Volume 60.
- Age-Specific Injury Risk Curves for Distributed, Anterior Thoracic Loading of Various Sizes of Adults Based on Sternal DeflectionsAuthors: Harold J. Mertz—General Motors Corporation (retired); Priya Prasad—Prasad Engineering, LLC; Dainius J. Dalmotas—D. J. Dalmotas Consulting, Inc.; Annette L….
- Association of Impact Velocity with Risks of Serious Injuries and Fatalities to Pedestrians in Commercial Truck-Pedestrian AccidentsAuthors: Yasuhiro Matsui and Shoko Oikawa—National Traffic Safety and Environment Laboratory, Japan; Kazuhiro Sorimachi, Akira Imanishi, and Takeshi Fujimura—Isuzu Advanced…
- Biomechanical Response of Military Booted and Unbooted Foot-Ankle-Tibia from Vertical LoadingAuthors: Frank A. Pintar, Michael B. Schlick, and Narayan Yoganandan—Medical College of Wisconsin and VA Medical Center; Liming Voo and…
- Biomechanical Responses of PMHS Subjected to Abdominal Seatbelt LoadingAuthors: Rakshit Ramachandra, Yun-Seok Kang, and John H. Bolte—The Ohio State University; Alena Hagedorn and Rodney Herriott—Transportation Research Center Inc.;…
- Development and Full Body Validation of a 5th Percentile Female Finite Element ModelAuthors: Matthew L. Davis, Bharath Koya, Jeremy M. Schap, and F. Scott Gayzik—Wake Forest School of Medicine, Virginia Tech-Wake Forest…
- Development of an Unbiased Validation Protocol to Assess the Biofidelity of Finite Element Head Models used in Prediction of Traumatic Brain InjuryAuthors: Chiara Giordano and Svein Kleiven—Royal Institute of Technology KTH, School of Technology and Health, Department of Neuronic Engineering Abstract This…
- Development, Evaluation, and Sensitivity Analysis of Parametric Finite Element Whole-Body Human Models in Side ImpactsAuthors: Eunjoo Hwang, Jingwen Hu, Cong Chen, Katelyn F. Klein, Carl S. Miller, and Matthew P. Reed—University of Michigan Transportation…
- Effect of Abdominal Loading Location on Liver Motion: Experimental Assessment using Ultrafast Ultrasound Imaging and Simulation with a Human Body ModelAuthors: Anicet Le Ruyet and Philippe Beillas—Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622, Lyon, France; Fabien…
- Evaluation of WIAMan Technology Demonstrator Biofidelity Relative to Sub-Injurious PMHS Response in Simulated Under-body Blast EventsAuthors: Hollie A. Pietsch, Kelly E. Bosch, and David R. Weyland—US Army Tank Automotive Research, Development, and Engineering Center; E….
- Investigation of Pelvic Injuries on Eighteen Post Mortem Human Subjects Submitted to Oblique Lateral ImpactsAuthors: Matthieu Lebarbé, Pascal Baudrit, and Pascal Potier—CEESAR; Philippe Petit, and Xavier Trosseille—LAB PSA Peugeot Citroën Renault; Sabine Compigne—Toyota Motor…
- Morphomics of the TalusAuthors: David Gorman and Ebram Handy—General Motors LLC and International Center for Automotive Medicine Fellows; Sikui Wang and Annette L….
- New Risk Curves for NHTSA’s Brain Injury Criterion (BrIC): Derivations and AssessmentsAuthors: Tony R. Laituri, Scott Henry, Kevin Pline, Guosong Li, Michael Frankstein, and Para Weerappuli—Ford Motor Company Abstract The National…
- Responses and Injuries to PMHS in Side-Facing and Oblique Seats in Horizontal Longitudinal Sled Tests per FAA Emergency Landing ConditionsAuthors: John R. Humm, Narayan Yoganandan, and Frank A. Pintar—Department of Neurosurgery, Medical College of Wisconsin; Richard L. DeWeese, David…
- The Effect of Rib Shape on StiffnessAuthors: Sven A. Holcombe— Department of Biomedical Engineering/International Center for Automotive Medicine, University of Michigan; Stewart C. Wang—International Center for…
- The Large Omnidirectional Child (LODC) ATD: Biofidelity Comparison with the Hybrid III 10 Year OldAuthors: Jason Stammen and Kevin Moorhouse—National Highway Traffic Safety Administration; Brian Suntay—Transportation Research Center Inc.; Michael Carlson and Yun-Seok Kang—The…
- Thoracic Injury Risk Curves for Rib Deflections of the SID-IIs Build Level DAuthors: Annette L. Irwin, Greg Crawford, David Gorman, and Sikui Wang—General Motors LLC; Harold J. Mertz—General Motors Corporation (retired) Abstract…
- Traffic Accidents Involving Cyclists Identifying Causal Factors Using Questionnaire Survey, Traffic Accident Data, and Real-World ObservationAuthors: Shoko Oikawa and Yasuhiro Matsui—National Traffic Safety and Environment Laboratory, Japan; Toshiya Hirose—Shibaura Institute of Technology, Japan; Shigeru Aomura—Tokyo…