Authors: Eunjoo Hwang, Jingwen Hu, Cong Chen, Katelyn F. Klein, Carl S. Miller, and Matthew P. Reed—University of Michigan Transportation Research Institute; Jonathan D. Rupp—Department of Emergency Medicine, Emory School of Medicine; Jason J. Hallman—Collaborative Safety Research Center, Toyota Technical Center USA
Abstract
Occupant stature and body shape may have significant effects on injury risks in motor vehicle crashes, but the current finite element (FE) human body models (HBMs) only represent occupants with a few sizes and shapes. Our recent studies have demonstrated that, by using a mesh morphing method, parametric FE HBMs can be rapidly developed for representing a diverse population. However, the biofidelity of those models across a wide range of human attributes has not been established. Therefore, the objectives of this study are 1) to evaluate the accuracy of HBMs considering subject-specific geometry information, and 2) to apply the parametric HBMs in a sensitivity analysis for identifying the specific parameters affecting body responses in side impact conditions. Four side-impact tests with two male post-mortem human subjects (PMHSs) were selected to evaluate the accuracy of the geometry and impact responses of the morphed HBMs. For each PMHS test, three HBMs were simulated to compare with the test results: the original Total Human Model for Safety (THUMS) v4.01 (O-THUMS), a parametric THUMS (P-THUMS), and a subject-specific THUMS (S-THUMS). The P-THUMS geometry was predicted from only age, sex, stature, and BMI using our statistical geometry models of skeleton and body shape, while the S-THUMS geometry was based on each PMHS’s CT data. The simulation results showed a preliminary trend that the correlations between the P-THUMS-predicted impact responses and the four PMHS tests (mean-CORA: 0.84, 0.78, 0.69, 0.70) were better than those between the O-THUMS and the normalized PMHS responses (mean-CORA: 0.74, 0.72, 0.55, 0.63), while they are similar to the correlations between S-THUMS and the PMHS tests (mean-CORA: 0.85, 0.85, 0.67, 0.72). The sensitivity analysis using the P-THUMS showed that, in side impact conditions, the HBM skeleton and body shape geometries as well as the body posture were more important in modeling the occupant impact responses than the bone and soft tissue material properties and the padding stiffness with the given parameter ranges. More investigations are needed to further support these findings.
Type: Full Paper
Keywords: Finite element human model, parametric human model, subject-specific human model, mesh morphing, side impact, PMHS test, model evaluation, sensitivity analysis
© Stapp Association, 2016
Access Additional Papers from This Volume
View additional Full Papers from the Stapp Car Crash Journal, Volume 60.
- Age-Specific Injury Risk Curves for Distributed, Anterior Thoracic Loading of Various Sizes of Adults Based on Sternal DeflectionsAuthors: Harold J. Mertz—General Motors Corporation (retired); Priya Prasad—Prasad Engineering, LLC; Dainius J. Dalmotas—D. J. Dalmotas Consulting, Inc.; Annette L….
- Association of Impact Velocity with Risks of Serious Injuries and Fatalities to Pedestrians in Commercial Truck-Pedestrian AccidentsAuthors: Yasuhiro Matsui and Shoko Oikawa—National Traffic Safety and Environment Laboratory, Japan; Kazuhiro Sorimachi, Akira Imanishi, and Takeshi Fujimura—Isuzu Advanced…
- Biomechanical Response of Military Booted and Unbooted Foot-Ankle-Tibia from Vertical LoadingAuthors: Frank A. Pintar, Michael B. Schlick, and Narayan Yoganandan—Medical College of Wisconsin and VA Medical Center; Liming Voo and…
- Biomechanical Responses of PMHS Subjected to Abdominal Seatbelt LoadingAuthors: Rakshit Ramachandra, Yun-Seok Kang, and John H. Bolte—The Ohio State University; Alena Hagedorn and Rodney Herriott—Transportation Research Center Inc.;…
- Development and Full Body Validation of a 5th Percentile Female Finite Element ModelAuthors: Matthew L. Davis, Bharath Koya, Jeremy M. Schap, and F. Scott Gayzik—Wake Forest School of Medicine, Virginia Tech-Wake Forest…
- Development of an Unbiased Validation Protocol to Assess the Biofidelity of Finite Element Head Models used in Prediction of Traumatic Brain InjuryAuthors: Chiara Giordano and Svein Kleiven—Royal Institute of Technology KTH, School of Technology and Health, Department of Neuronic Engineering Abstract This…
- Development, Evaluation, and Sensitivity Analysis of Parametric Finite Element Whole-Body Human Models in Side ImpactsAuthors: Eunjoo Hwang, Jingwen Hu, Cong Chen, Katelyn F. Klein, Carl S. Miller, and Matthew P. Reed—University of Michigan Transportation…
- Effect of Abdominal Loading Location on Liver Motion: Experimental Assessment using Ultrafast Ultrasound Imaging and Simulation with a Human Body ModelAuthors: Anicet Le Ruyet and Philippe Beillas—Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622, Lyon, France; Fabien…
- Evaluation of WIAMan Technology Demonstrator Biofidelity Relative to Sub-Injurious PMHS Response in Simulated Under-body Blast EventsAuthors: Hollie A. Pietsch, Kelly E. Bosch, and David R. Weyland—US Army Tank Automotive Research, Development, and Engineering Center; E….
- Investigation of Pelvic Injuries on Eighteen Post Mortem Human Subjects Submitted to Oblique Lateral ImpactsAuthors: Matthieu Lebarbé, Pascal Baudrit, and Pascal Potier—CEESAR; Philippe Petit, and Xavier Trosseille—LAB PSA Peugeot Citroën Renault; Sabine Compigne—Toyota Motor…
- Morphomics of the TalusAuthors: David Gorman and Ebram Handy—General Motors LLC and International Center for Automotive Medicine Fellows; Sikui Wang and Annette L….
- New Risk Curves for NHTSA’s Brain Injury Criterion (BrIC): Derivations and AssessmentsAuthors: Tony R. Laituri, Scott Henry, Kevin Pline, Guosong Li, Michael Frankstein, and Para Weerappuli—Ford Motor Company Abstract The National…
- Responses and Injuries to PMHS in Side-Facing and Oblique Seats in Horizontal Longitudinal Sled Tests per FAA Emergency Landing ConditionsAuthors: John R. Humm, Narayan Yoganandan, and Frank A. Pintar—Department of Neurosurgery, Medical College of Wisconsin; Richard L. DeWeese, David…
- The Effect of Rib Shape on StiffnessAuthors: Sven A. Holcombe— Department of Biomedical Engineering/International Center for Automotive Medicine, University of Michigan; Stewart C. Wang—International Center for…
- The Large Omnidirectional Child (LODC) ATD: Biofidelity Comparison with the Hybrid III 10 Year OldAuthors: Jason Stammen and Kevin Moorhouse—National Highway Traffic Safety Administration; Brian Suntay—Transportation Research Center Inc.; Michael Carlson and Yun-Seok Kang—The…
- Thoracic Injury Risk Curves for Rib Deflections of the SID-IIs Build Level DAuthors: Annette L. Irwin, Greg Crawford, David Gorman, and Sikui Wang—General Motors LLC; Harold J. Mertz—General Motors Corporation (retired) Abstract…
- Traffic Accidents Involving Cyclists Identifying Causal Factors Using Questionnaire Survey, Traffic Accident Data, and Real-World ObservationAuthors: Shoko Oikawa and Yasuhiro Matsui—National Traffic Safety and Environment Laboratory, Japan; Toshiya Hirose—Shibaura Institute of Technology, Japan; Shigeru Aomura—Tokyo…