Authors: Kent Butz, Chad Spurlock, Rajarshi Roy, Cameron Bell, Paul Barrett, Aaron Ward, Xudong Xiao, Allen Shirley, Colin Welch, Kevin Lister—Corvid Technologies
Abstract
Improving injury prediction accuracy and fidelity for mounted Warfighters has become an area of focus for the U.S. military in response to improvised explosive device (IED) use in both Iraq and Afghanistan. Although the Hybrid III anthropomorphic test device (ATD) has historically been used for crew injury analysis, it is only capable of predicting a few select skeletal injuries. The Computational Anthropomorphic Virtual Experiment Man (CAVEMAN) human body model is being developed to expand the injury analysis capability to both skeletal and soft tissues. The CAVEMAN model is built upon the Zygote 50th percentile male human CAD model and uses a finite element modeling approach developed for high performance computing (HPC). The lower extremity subset of the CAVEMAN human body model presented herein includes: 28 bones, 26 muscles, 40 ligaments, fascia, cartilage and skin. Sensitivity studies have been conducted with the CAVEMAN lower extremity model to determine the structures critical for load transmission through the leg in the underbody blast (UBB) environment. An evaluation of the CAVEMAN lower extremity biofidelity was also carried out using 14 unique data sets derived by the Warrior Injury Assessment Manikin (WIAMan) program cadaveric lower leg testing. Extension of the CAVEMAN lower extremity model into anatomical tissue failure will provide additional injury prediction capabilities, beyond what is currently achievable using ATDs, to improve occupant survivability analyses within military vehicles.
Type: Full Paper
Keywords: CAVEMAN, human body model, finite element modeling, injury biomechanics, computational modeling, underbody blast, improvised explosive device
© Stapp Association, 2017
Access Additional Papers from This Volume
View additional Full Papers from the Stapp Car Crash Journal, Volume 61.
- Analysis of Repeatability and Reproducibility Standards of ATD Response for the Correlation MethodAuthors: Lan Xu and Guy Nusholtz—FCA US LLC, USA Abstract Statistical methods, using the entire time-history, can be used to…
- Application of Extreme Value Theory to Crash Data AnalysisAuthors: Lan Xu and Guy Nusholtz—FCA US LLC, USA Abstract A parametric model obtained by fitting a set of data…
- Association of Impact Velocity with Serious-Injury and Fatality Risks to Cyclists in Commercial Truck-Cyclist AccidentsAuthors: Yasuhiro Matsui—National Traffic Safety and Environment Laboratory, Japan; Shoko Oikawa—Tokyo Metropolitan University; Kazuhiro Sorimachi, Akira Imanishi, and Takeshi Fujimura—Isuzu…
- Biofidelity Evaluation of the THOR and Hybrid III 50th Percentile Male Frontal Impact Anthropomorphic Test DevicesAuthors: Daniel Parent, Matthew Craig, Kevin Moorhouse—National Highway Traffic Safety Administration Abstract The objective of this study is to present…
- Biomechanics of Lumbar Motion-Segments in Dynamic CompressionAuthors: Mike W. J. Arun, Prasannaah Hadagali, Klaus Driesslein, William Curry, Narayan Yoganandan, and Frank A. Pintar—Department of Neurosurgery, Medical…
- Development of the CAVEMAN Human Body Model: Validation of Lower Extremity Sub-Injurious Response to Vertical Accelerative Loading Authors: Kent Butz, Chad Spurlock, Rajarshi Roy, Cameron Bell, Paul Barrett, Aaron Ward, Xudong Xiao, Allen Shirley, Colin Welch, Kevin…
- Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading ConditionsAuthors: Sajal Chirvi, Narayan Yoganandan, Mike Schlick, William Curry—Department of Neurosurgery, Medical College of Wisconsin/VA Medical Center; Frank Pintar—Department of…
- Human Shoulder Response to High Velocity Lateral ImpactAuthors: Matthieu Lebarbé—CEESAR, Nanterre, France; Philippe Vezin—Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622, Lyon, France; Frédéric…
- Neck Injury Response in High Vertical Accelerations and its Algorithmical Formalization to Mitigate Neck InjuriesAuthors: Julie Klima, Jian Kang, AnnMarie Meldrum, Steven Pankiewicz—Tank Automotive Research, Development, and Engineering Center Abstract Tank Automotive Research, Development…
- New Reference PMHS Tests to Assess Whole-Body Pedestrian Impact Using a Simplified Generic Vehicle Front-EndAuthors: Eric Song, Philippe Petit, and Xavier Trosseille—LAB PSA Renault; Jérôme Uriot, Pascal Potier, and Denis Dubois—CEESAR; Richard Douard—Université Paris…
- Occupant Kinematics in Simulated Autonomous Driving Vehicle Collisions: Influence of Seating Position, Direction and AngleAuthors: Yuichi Kitagawa, Shigeki Hayashi, Katsunori Yamada, Mitsuaki Gotoh—Toyota Motor Corporation Abstract This two-part study analyzed occupant kinematics in simulated…
- Optimal Specifications for the Advanced Pedestrian Legform ImpactorAuthors: Takahiro Isshiki, Jacobo Antona-Makoshi, and Atsuhiro Konosu—Japan Automobile Research Institute; Yukou Takahashi—Japan Automobile Manufacturers Association Abstract This study addresses…
- Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal CrashesAuthors: Jingwen Hu and Matthew P. Reed—University of Michigan Transportation Research Institute; Jonathan D. Rupp—Emory University School of Medicine; Kurt…
- Strain-rate Dependency of Axonal Tolerance for Uniaxial StretchingAuthors: Hiromichi Nakadate, Evrim Kurtoglu, Hidenori Furukawa, Shoko Oikawa, and Shigeru Aomura—Graduate School of System Design, Tokyo Metropolitan University; Akira…