Authors: Clément Pozzi, Marc Gardegaront, Lucille Allegre, Philippe Beillas—Univ Lyon, Univ Lyon 1, Univ Eiffel, LBMC UMR_T9406, 69622 Lyon, France
Abstract
The development of drones has raised questions about their safety in case of high-speed impacts with the head. This has been recently studied with dummies, postmortem human surrogates and numerical models but questions are still open regarding the transfer of skull fracture tolerance and procedures from road safety to drone impacts.
This study aimed to assess the performance of an existing head FE model (GHBMC M50-O v6.0) in terms of response and fracture prediction using a wide range of impact conditions from the literature (low and high-speed, rigid and deformable impactors, drones). The fracture prediction capability was assessed using 156 load cases, including 18 high speed tests and 19 tests for which subject specific models were built.
The GHBMC model was found to overpredict peak forces, especially for rigid impactors and fracture cases. However, the model captured the head accelerations tendencies for drone impacts. The formulation of bone elements, the failure representation and the scalp material properties were found of interest for future investigation. The model still predicted a sizable proportion of skull fractures. With failure enabled, it reached a sensitivity of 86.6% and a specificity of 82.0% (n=156). With failure disabled, risk curves with a rating of good according to ISO/TS 18506:2014 were developed using the second principal strain in the outer table cortical solid elements.
Type: Full Paper
Keywords: Whiplash, muscle injury, rear impact, finite elements, human body model, muscle activation
© Stapp Association, 2025
Access Additional Papers from This Volume
View additional Full Papers from the Stapp Car Crash Journal, Volume 69.
- Assessment of the Skull Fracture Prediction Capability of Finite Element Head ModelsAuthors: Clément Pozzi, Marc Gardegaront, Lucille Allegre, Philippe Beillas—Univ Lyon, Univ Lyon 1, Univ Eiffel, LBMC UMR_T9406, 69622 Lyon, France…
- Development of a Generic Nearside Impact Test Fixture for Evaluating In-Vehicle Crashworthiness of WheelchairsAuthors: Kyle Boyle, Jingwen Hu, Miriam Manary, Nichole R. Orton, Kathleen D. Klinich—University of Michigan Transportation Research Institute Abstract Current…
- Integration of Muscle Pre-tension and Activation to Evaluate Neck Muscle Strain Injury Risk during Simulated Rear Impacts Using a Finite Element Neck ModelAuthors: Matheus A. Correia, Stewart D. McLachlin, Duane S. Cronin—Department of Mechanical and Mechatronics Engineering, University of Waterloo Abstract Prevention…
- Investigation of Injury Risk Functions of THOR-AV 50th Percentile Male DummyAuthor: Z. Jerry Wang and George Hu—Humanetics Innovative Solutions, Inc. Abstract This research investigated injury risk functions (IRF) for the…
- Proposed Reformulation of Brain Injury Criteria (BrIC) Using Head Rotation-Induced Brain Injury Thresholds Simulated and Derived Directly from A Subhuman Primate Finite Element ModelAuthors: Dominic R. Demma, Ying Tao, Liying Zhang—Wayne State University; Priya Prasad—Prasad Engineering, LLC Abstract Recent studies have found that…
- Traumatic Head and Brain Injuries in Helmeted Motorcycle CrashesAuthor: John Lloyd—BRAINS, Inc Abstract This study presents an analysis of 364 motorcycle helmet impact tests, including standard certified full-face,…